快速访问
文章信息
参考文献
[1]TENG C, ZHANG C, GUO F, et al. Advances in the study of the transcriptional regulation mechanism of Plant miRNAs [J]. Life, 2023, 13(9): 1917.
[2]JIANG J, LV M, LIANG Y, et al. Identification of novel and conserved miRNAs involved in pollen development in Brassica campestris ssp. chinensis by high-throughput sequencing and degradome analysis [J]. BMC genomics, 2014, 15: 1-13.
[3]LI J, WEN X, ZHANG Q, et al. cla-miR164-NO APICAL MERISTEM (ClNAM) regulates the inflorescence architecture development of Chrysanthemum lavandulifolium [J]. Horticulture Research, 2024, 11(4): uhae039.
[4]SUN C, ZHAO Q, LIU DD, et al. Ectopic expression of the apple Md-miRNA156h gene regulates flower and fruit development in Arabidopsis [J]. Plant Cell, Tissue and Organ Culture (PCTOC), 2013, 112: 343-351.
[5]VARKONYI-GASIC E, WU R, WOOD M, et al. Protocol: a highly sensitive RT-PCR method for detection and quantification of microRNAs [J]. Plant Methods, 2007, 3(1): 12.
[6]TSUZUKI M, TAKEDA A, WATANABE Y. Recovery of dicer-like 1-late flowering phenotype by miR172 expressed by the noncanonical DCL4-dependent biogenesis pathway [J]. Rna, 2014, 20(8): 1320-1327.
[7]RAO S, LI Y, CHEN J. Combined analysis of microRNAs and target genes revealed miR156-SPLs and miR172-AP2 are involved in a delayed flowering phenomenon after chromosome doubling in black goji (Lycium ruthencium) [J]. Frontiers in Genetics, 2021, 12: 706930.
[8]赵维萍, 丁子俊, 王方平, 等. “滁菊”花青素合成酶(CmANS)基因的分子特征、原核表达与表达分析 [J].植物生理学报, 2022, 58(4): 677-686.
[9]WAHEED S, ZENG L. The critical role of miRNAs in regulation of flowering time and flower development [J]. Genes, 2020, 11(3): 319.
[10]ASLAM M, FAKHER B, QIN Y. Big role of small RNAs in female gametophyte development [J]. International Journal of Molecular Sciences, 2022, 23(4): 1979.
[11]LUO X, LUO S, FU Y, et al. Genome-wide identification and comparative profiling of microRNAs reveal flavonoid biosynthesis in two contrasting flower color cultivars of tree peony [J]. Frontiers in Plant Science, 2022, 12: 797799.
[12]ADDO-QUAYE C, MILLER W, AXTELL M J. Cleave Land: a pipeline for using degradome data to find cleaved small RNA targets [J]. Bioinformatics, 2008, 25(1): 130-131.
[13]ZHANG X, CHENG L, SHANG H, et al. Research advances of coloring mechanism regulated by MicroRNAs in plants [J]. Plant Physiology and Biochemistry, 2024: 109036.
[14]CHEN X. A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development [J]. Science, 2004, 303(5666): 2022-2025.
[15]PING QI, CHENG P, HUANG F, et al. The heterologous expression in Arabidopsis thaliana of a chrysanthemum gene encoding the BBX family transcription factor CmBBX13 delays flowering [J]. Plant Physiology and Biochemistry, 2019, 144: 480-487.
[16]MCELVER J, TZAFRIR I, AUX G, et al. Insertional mutagenesis of genes required for seed development in Arabidopsis thaliana [J]. Genetics, 2001, 159(4): 1751-1763.
[17]CLOUGH S J, BENT A F. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana [J]. The Plant Journal, 1998, 16(6): 735-743.
[18]ZHOU L, LIU S, WANG Y, et al. CmMYB3-like negatively regulates anthocyanin biosynthesis and flower color formation during the post-flowering stage in Chrysanthemum morifolium [J]. Horticultural Plant Journal, 2024, 10(1): 194-204.
[19]WANG Y, WANG Y, ZHOU L J, et al. CmNAC25 targets CmMYB6 to positively regulate anthocyanin biosynthesis during the post-flowering stage in chrysanthemum [J]. BMC biology, 2023, 21(1): 211.
[20]WANG. miRNA-Mediated Regulation of Flower Development in Arabidopsis [J]. Plant Cell, 2021, 33(5), 1234-1245.
[21]ATTRI K. Sequence and functional diversification of miR391-directed PTGS modules in plants [D]. Texas Tech University, 2023.
[22]TU Z, XIA H, YANG L, et al. The roles of microRNA-long non-coding RNA-mRNA networks in the regulation of leaf and flower development in Liriodendron chinense [J]. Frontiers in Plant Science, 2022, 13: 816875.
[23]SASAKI K, TANAKA T. Overcoming difficulties in molecular biological analysis through a combination of genetic engineering, genome editing, and genome analysis in hexaploid Chrysanthemum morifolium [J]. Plants, 2023, 12(13): 2566.
[24]NAKANO M, HIRAKAWA H, FUKAI E, et al. A chromosome-level genome sequence of Chrysanthemum seticuspe, a model species for hexaploid cultivated chrysanthemum [J]. Communications Biology, 2021, 4(1): 1167.
[25]TYURIN A A, SUHORUKOVA A V, KABARDAEVA K V, et al. Transient gene expression is an effective experimental tool for the research into the fine mechanisms of plant gene function: advantages, limitations, and solutions [J]. Plants, 2020, 9(9): 1187.
[26]PU Y, HUANG H, WEN X, et al. Comprehensive transcriptomic analysis provides new insights into the mechanism of ray floret morphogenesis in chrysanthemum [J]. BMC genomics, 2020, 21: 1-16.
[27]HUANG X, LI Y, WANG L, et al. A draft genome of Chrysanthemum morifolium provides insights into floral traits and polyploidization [J]. Horticulture Research, 2022, 9: uhab043.
[28]WU H, CUI Y, LI D, et al. Carbon dots as nanocarriers for CRISPR/Cas9 ribonucleoprotein delivery in plants [J]. ACS Nano, 2021, 15(8): 12796-12808.
[29]SU J, JIANG J, ZHANG F, et al. Current achievements and future prospects in the genetic breeding of chrysanthemum: a review [J]. Horticulture research, 2019, 6.
版权与开放获取声明
作为一本开放获取的学术期刊,所有文章均遵循 Creative Commons Attribution 4.0 International License (CC BY 4.0) 协议发布,允许用户在署名原作者的前提下自由共享与再利用内容。所有文章均可免费供读者和机构阅读、下载、引用与传播,EWA Publishing 不会通过期刊的出版发行向读者或机构收取任何费用。